If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10b^2-8b-3=0
a = 10; b = -8; c = -3;
Δ = b2-4ac
Δ = -82-4·10·(-3)
Δ = 184
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{184}=\sqrt{4*46}=\sqrt{4}*\sqrt{46}=2\sqrt{46}$$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-8)-2\sqrt{46}}{2*10}=\frac{8-2\sqrt{46}}{20} $$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-8)+2\sqrt{46}}{2*10}=\frac{8+2\sqrt{46}}{20} $
| 7x-3+8x-1=180 | | -2x=+8. | | b-1/8=91/2 | | 1x-8=10+7x | | 7x-2(3+×)=9 | | (2x+4)/3x=2/1 | | m-1.2=2.4 | | 3z−11=1 | | 22+x=2+x | | 1.5(2x-1)+7=4x-13 | | x2+2x-3(x-19=28 | | 10r-15=-9 | | 50=50p(p)= | | 8v+v−2v−2v=20 | | 3x^2+8x-96=0 | | 8x+5-4x=24 | | 50=50pp= | | 7^x=100 | | 6+6(2y-1)=3+12y | | 2.9=y+6.3 | | 6{x-7}=65 | | 40=5rr= | | -5(m-7)=60 | | n/2+5=152 | | 6(x+18=9x | | 6x-4+3x+4)=180 | | 5(x)=33 | | 4n-5=5 | | -35x+6=27 | | k+(-15)=-24 | | 2/3(2x-3x)=4/3x | | -4(9y+5)=40-6y |